Menghitung Probabilitas Susunan Kartu Poker Online

Tahukah kamu jika dalam permainan Poker Online kita dapat menerapkan teori matematika di dalamnya? Bukankah itu sangat mungkin dengan adanya teori probabilitas maupun kombinatorial kita dapat memprediksi susunan kartu yang akan kita dapatkan dalam permainan poker online. Taak hanya poker online, teori ini juga bisa digunakan pada poker konvensional, lho. Jika anda belum percaya akan penerapan teori matematika dalam permainan poker online, kita akan buktikan disini.

  1. Three of A Kind

Berarti mengambil 3 dari 4, ada 13 pilihan. 2 kartu sisanya harus tidak membentuk apapun. MIsal kita telah dapat tiga kartu As, maka 2 kartu terakhir tidak boleh As, ataupun sama (Pair) karena jika As maka akan membentuk Four of Kind, dan bila Pair maka akan membentuk Full House. Sehingga 2 kartu yang tidak boleh dipakai yaitu 4 As (3 As telah terpakai dan 1 As lagi tidak boleh) dan semua jenis pair. Sehingga kita dapat menghitung sebagai berikut. 3 Kartu Pertama memiliki kemungkinan sejumlah C(4,3) x 13 = 52 Kartu keempat memiliki 48 kemungkinan (tak boleh yang sama dengan 3 kartu awal) Kartu Kelima memiliki 44 kemungkinan (tak boleh sama dengan 3 kartu awal atau kartu keempat). Karena kartu keempat dan kelima tidak berpengaruh urutannya, maka harus dibagi 2!. Sehingga totalnya adalah 52 x 48 x 44 / 2 = 54.912

Peluangnya = 54.912 : 2.598.960= 2,113 %

  1. Two Pair

Berarti terdapat 2 pasangan kartu. Kartu terakhir tidak boleh sama dengan kartu sebelumnya, sehingga terdapat 44 kemungkinan kartu terakhir. Kita perlu memilih 2 pasang dari 13 jenis yang ada, dan tiap pasang memiliki kemungkinan sebanyak C(4,2) Totalnya adalah C(13,2) x C(4,2) x C(4,2) x 44 = 123.552

Peluangnya = 123.552 : 2.598.960= 4,754 %

  1. Pair

Untuk 2 kartu yang sama, terdapat C(4,2) kemungkinan, dan ada 13 jenis yang dapat dipilih. Sehingga terdapat C(4,2) x 13 = 783 kartu sisanya tidak boleh membentuk apapun, sehingga ketiganya harus jenis yang berbeda (tipe tidak berpengaruh). Berarti kita mengambil 3 dari 12, dan setiapnya memiliki 4 kemungkinan warna. Sehingga terdapat C(12,3) x 43 = 14.080 Totalnya adalah 78 x 14.080 = 1.098.240

Peluangnya = 1.098.240 : 2.598.960= 42,257 %

  • High Card

Kelima kartu tidak boleh membentuk apapun, berarti kelimanya harus berbeda, dan tidak boleh berwarna sama semua atau berurutan. Secara Jenis (As – K), terdapat 10 jenis kombinasi yang terlarang (Straight). Sehingga ada C(13,5) – 10 =1277 kemungkinan Secara Tipe (D, C, H, S), terdapat 4 kombinasi yang terlarang (flush). Sehingga terdapat 45 – 4 = 1020 kemungkinan Totalnya ada 1277 x 1020 = 1.302.540 kemungkinan.